查看原文
其他

限流降级神器-哨兵(sentinel)原理分析

逅弈 逅弈逐码 2019-07-13

Sentinel 是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。

大家可能会问:Sentinel 和之前常用的熔断降级库 Netflix Hystrix 有什么异同呢?Sentinel官网有一个对比的文章,这里摘抄一个总结的表格,具体的对比可以点此 链接 查看。

对比内容SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于响应时间或失败比率基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流不支持
流量整形支持慢启动、匀速器模式不支持
系统负载保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

从对比的表格可以看到,Sentinel比Hystrix在功能性上还要强大一些,本文让我们一起来了解下Sentinel的源码,揭开Sentinel的神秘面纱。

项目结构

将Sentinel的源码fork到自己的github库中,接着把源码clone到本地,然后开始源码阅读之旅吧。

首先我们看一下Sentinel项目的整个结构:

  • sentinel-core 核心模块,限流、降级、系统保护等都在这里实现

  • sentinel-dashboard 控制台模块,可以对连接上的sentinel客户端实现可视化的管理

  • sentinel-transport 传输模块,提供了基本的监控服务端和客户端的API接口,以及一些基于不同库的实现

  • sentinel-extension 扩展模块,主要对DataSource进行了部分扩展实现

  • sentinel-adapter 适配器模块,主要实现了对一些常见框架的适配

  • sentinel-demo 样例模块,可参考怎么使用sentinel进行限流、降级等

  • sentinel-benchmark 基准测试模块,对核心代码的精确性提供基准测试

运行样例

基本上每个框架都会带有样例模块,有的叫example,有的叫demo,sentinel也不例外。

那我们从sentinel的demo中找一个例子运行下看看大致的情况吧,上面说过了sentinel主要的核心功能是做限流、降级和系统保护,那我们就从“限流”开始看sentinel的实现原理吧。

可以看到sentinel-demo模块中有很多不同的样例,我们找到basic模块下的flow包,这个包下面就是对应的限流的样例,但是限流也有很多种类型的限流,我们就找根据qps限流的类看吧,其他的限流方式原理上都大差不差。

  1. public class FlowQpsDemo {

  2.    private static final String KEY = "abc";

  3.    private static AtomicInteger pass = new AtomicInteger();

  4.    private static AtomicInteger block = new AtomicInteger();

  5.    private static AtomicInteger total = new AtomicInteger();

  6.    private static volatile boolean stop = false;

  7.    private static final int threadCount = 32;

  8.    private static int seconds = 30;

  9.    public static void main(String[] args) throws Exception {

  10.        initFlowQpsRule();

  11.        tick();

  12.        // first make the system run on a very low condition

  13.        simulateTraffic();

  14.        System.out.println("===== begin to do flow control");

  15.        System.out.println("only 20 requests per second can pass");

  16.    }

  17.    private static void initFlowQpsRule() {

  18.        List<FlowRule> rules = new ArrayList<FlowRule>();

  19.        FlowRule rule1 = new FlowRule();

  20.        rule1.setResource(KEY);

  21.        // set limit qps to 20

  22.        rule1.setCount(20);

  23.        // 设置限流类型:根据qps

  24.        rule1.setGrade(RuleConstant.FLOW_GRADE_QPS);

  25.        rule1.setLimitApp("default");

  26.        rules.add(rule1);

  27.        // 加载限流的规则

  28.        FlowRuleManager.loadRules(rules);

  29.    }

  30.    private static void simulateTraffic() {

  31.        for (int i = 0; i < threadCount; i++) {

  32.            Thread t = new Thread(new RunTask());

  33.            t.setName("simulate-traffic-Task");

  34.            t.start();

  35.        }

  36.    }

  37.    private static void tick() {

  38.        Thread timer = new Thread(new TimerTask());

  39.        timer.setName("sentinel-timer-task");

  40.        timer.start();

  41.    }

  42.    static class TimerTask implements Runnable {

  43.        @Override

  44.        public void run() {

  45.            long start = System.currentTimeMillis();

  46.            System.out.println("begin to statistic!!!");

  47.            long oldTotal = 0;

  48.            long oldPass = 0;

  49.            long oldBlock = 0;

  50.            while (!stop) {

  51.                try {

  52.                    TimeUnit.SECONDS.sleep(1);

  53.                } catch (InterruptedException e) {

  54.                }

  55.                long globalTotal = total.get();

  56.                long oneSecondTotal = globalTotal - oldTotal;

  57.                oldTotal = globalTotal;

  58.                long globalPass = pass.get();

  59.                long oneSecondPass = globalPass - oldPass;

  60.                oldPass = globalPass;

  61.                long globalBlock = block.get();

  62.                long oneSecondBlock = globalBlock - oldBlock;

  63.                oldBlock = globalBlock;

  64.                System.out.println(seconds + " send qps is: " + oneSecondTotal);

  65.                System.out.println(TimeUtil.currentTimeMillis() + ", total:" + oneSecondTotal

  66.                    + ", pass:" + oneSecondPass

  67.                    + ", block:" + oneSecondBlock);

  68.                if (seconds-- <= 0) {

  69.                    stop = true;

  70.                }

  71.            }

  72.            long cost = System.currentTimeMillis() - start;

  73.            System.out.println("time cost: " + cost + " ms");

  74.            System.out.println("total:" + total.get() + ", pass:" + pass.get()

  75.                + ", block:" + block.get());

  76.            System.exit(0);

  77.        }

  78.    }

  79.    static class RunTask implements Runnable {

  80.        @Override

  81.        public void run() {

  82.            while (!stop) {

  83.                Entry entry = null;

  84.                try {

  85.                    entry = SphU.entry(KEY);

  86.                    // token acquired, means pass

  87.                    pass.addAndGet(1);

  88.                } catch (BlockException e1) {

  89.                    block.incrementAndGet();

  90.                } catch (Exception e2) {

  91.                    // biz exception

  92.                } finally {

  93.                    total.incrementAndGet();

  94.                    if (entry != null) {

  95.                        entry.exit();

  96.                    }

  97.                }

  98.                Random random2 = new Random();

  99.                try {

  100.                    TimeUnit.MILLISECONDS.sleep(random2.nextInt(50));

  101.                } catch (InterruptedException e) {

  102.                    // ignore

  103.                }

  104.            }

  105.        }

  106.    }

  107. }

执行上面的代码后,打印出如下的结果:

可以看到,上面的结果中,pass的数量和我们的预期并不相同,我们预期的是每秒允许pass的请求数是20个,但是目前有很多pass的请求数是超过20个的。

原因是,我们这里测试的代码使用了多线程,注意看 threadCount 的值,一共有32个线程来模拟,而在RunTask的run方法中执行资源保护时,即在 SphU.entry 的内部是没有加锁的,所以就会导致在高并发下,pass的数量会高于20。

可以用下面这个模型来描述下,有一个TimeTicker线程在做统计,每1秒钟做一次。有N个RunTask线程在模拟请求,被访问的business code被资源key保护着,根据规则,每秒只允许20个请求通过。

由于pass、block、total等计数器是全局共享的,而多个RunTask线程在执行SphU.entry申请获取entry时,内部没有锁保护,所以会存在pass的个数超过设定的阈值。

那为了证明在单线程下限流的正确性与可靠性,那我们的模型就应该变成了这样:

那接下来我把 threadCount 的值改为1,只有一个线程来执行这个方法,看下具体的限流结果,执行上面的代码后打印的结果如下:

可以看到pass数基本上维持在20,但是第一次统计的pass值还是超过了20。这又是什么原因导致的呢?

其实仔细看下Demo中的代码可以发现,模拟请求是用的一个线程,统计结果是用的另外一个线程,统计线程每1秒钟统计一次结果,这两个线程之间是有时间上的误差的。从TimeTicker线程打印出来的时间戳可以看出来,虽然每隔一秒进行统计,但是当前打印时的时间和上一次的时间还是有误差的,不完全是1000ms的间隔。

要真正验证每秒限制20个请求,保证数据的精准性,需要做基准测试,这个不是本篇文章的重点,有兴趣的同学可以去了解下jmh,sentinel中的基准测试也是通过jmh做的。

深入原理

通过一个简单的示例程序,我们了解了sentinel可以对请求进行限流,除了限流外,还有降级和系统保护等功能。那现在我们就拨开云雾,深入源码内部去一窥sentinel的实现原理吧。

首先从入口开始: SphU.entry() 。这个方法会去申请一个entry,如果能够申请成功,则说明没有被限流,否则会抛出BlockException,表面已经被限流了。

SphU.entry() 方法往下执行会进入到 Sph.entry() ,Sph的默认实现类是 CtSph ,在CtSph中最终会执行到 entry(ResourceWrapperresourceWrapper,intcount,Object...args)throwsBlockException 这个方法。

我们来看一下这个方法的具体实现:

  1. public Entry entry(ResourceWrapper resourceWrapper, int count, Object... args) throws BlockException {

  2.    Context context = ContextUtil.getContext();

  3.    if (context instanceof NullContext) {

  4.        // Init the entry only. No rule checking will occur.

  5.        return new CtEntry(resourceWrapper, null, context);

  6.    }

  7.    if (context == null) {

  8.        context = MyContextUtil.myEnter(Constants.CONTEXT_DEFAULT_NAME, "", resourceWrapper.getType());

  9.    }

  10.    // Global switch is close, no rule checking will do.

  11.    if (!Constants.ON) {

  12.        return new CtEntry(resourceWrapper, null, context);

  13.    }

  14.    // 获取该资源对应的SlotChain

  15.    ProcessorSlot<Object> chain = lookProcessChain(resourceWrapper);

  16.    /*

  17.     * Means processor cache size exceeds {@link Constants.MAX_SLOT_CHAIN_SIZE}, so no

  18.     * rule checking will be done.

  19.     */

  20.    if (chain == null) {

  21.        return new CtEntry(resourceWrapper, null, context);

  22.    }

  23.    Entry e = new CtEntry(resourceWrapper, chain, context);

  24.    try {

  25.        // 执行Slot的entry方法

  26.        chain.entry(context, resourceWrapper, null, count, args);

  27.    } catch (BlockException e1) {

  28.        e.exit(count, args);

  29.        // 抛出BlockExecption

  30.        throw e1;

  31.    } catch (Throwable e1) {

  32.        RecordLog.info("Sentinel unexpected exception", e1);

  33.    }

  34.    return e;

  35. }

这个方法可以分为以下几个部分:

  • 1.对参数和全局配置项做检测,如果不符合要求就直接返回了一个CtEntry对象,不会再进行后面的限流检测,否则进入下面的检测流程。

  • 2.根据包装过的资源对象获取对应的SlotChain

  • 3.执行SlotChain的entry方法

    • 3.1.如果SlotChain的entry方法抛出了BlockException,则将该异常继续向上抛出

    • 3.2.如果SlotChain的entry方法正常执行了,则最后会将该entry对象返回

  • 4.如果上层方法捕获了BlockException,则说明请求被限流了,否则请求能正常执行

其中比较重要的是第2、3两个步骤,我们来分解一下这两个步骤。

创建SlotChain

首先看一下lookProcessChain的方法实现:

  1. private ProcessorSlot<Object> lookProcessChain(ResourceWrapper resourceWrapper) {

  2.    ProcessorSlotChain chain = chainMap.get(resourceWrapper);

  3.    if (chain == null) {

  4.        synchronized (LOCK) {

  5.            chain = chainMap.get(resourceWrapper);

  6.            if (chain == null) {

  7.                // Entry size limit.

  8.                if (chainMap.size() >= Constants.MAX_SLOT_CHAIN_SIZE) {

  9.                    return null;

  10.                }

  11.                // 具体构造chain的方法

  12.                chain = Env.slotsChainbuilder.build();

  13.                Map<ResourceWrapper, ProcessorSlotChain> newMap = new HashMap<ResourceWrapper, ProcessorSlotChain>(chainMap.size() + 1);

  14.                newMap.putAll(chainMap);

  15.                newMap.put(resourceWrapper, chain);

  16.                chainMap = newMap;

  17.            }

  18.        }

  19.    }

  20.    return chain;

  21. }

该方法使用了一个HashMap做了缓存,key是资源对象。这里加了锁,并且做了 doublecheck 。具体构造chain的方法是通过: Env.slotsChainbuilder.build() 这句代码创建的。那就进入这个方法看看吧。

  1. public ProcessorSlotChain build() {

  2.    ProcessorSlotChain chain = new DefaultProcessorSlotChain();

  3.    chain.addLast(new NodeSelectorSlot());

  4.    chain.addLast(new ClusterBuilderSlot());

  5.    chain.addLast(new LogSlot());

  6.    chain.addLast(new StatisticSlot());

  7.    chain.addLast(new SystemSlot());

  8.    chain.addLast(new AuthoritySlot());

  9.    chain.addLast(new FlowSlot());

  10.    chain.addLast(new DegradeSlot());

  11.    return chain;

  12. }

Chain是链条的意思,从build的方法可看出,ProcessorSlotChain是一个链表,里面添加了很多个Slot。具体的实现需要到DefaultProcessorSlotChain中去看。

  1. public class DefaultProcessorSlotChain extends ProcessorSlotChain {

  2.    AbstractLinkedProcessorSlot<?> first = new AbstractLinkedProcessorSlot<Object>() {

  3.        @Override

  4.        public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, Object... args)

  5.            throws Throwable {

  6.            super.fireEntry(context, resourceWrapper, t, count, args);

  7.        }

  8.        @Override

  9.        public void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {

  10.            super.fireExit(context, resourceWrapper, count, args);

  11.        }

  12.    };

  13.    AbstractLinkedProcessorSlot<?> end = first;

  14.    @Override

  15.    public void addFirst(AbstractLinkedProcessorSlot<?> protocolProcessor) {

  16.        protocolProcessor.setNext(first.getNext());

  17.        first.setNext(protocolProcessor);

  18.        if (end == first) {

  19.            end = protocolProcessor;

  20.        }

  21.    }

  22.    @Override

  23.    public void addLast(AbstractLinkedProcessorSlot<?> protocolProcessor) {

  24.        end.setNext(protocolProcessor);

  25.        end = protocolProcessor;

  26.    }

  27. }

DefaultProcessorSlotChain中有两个AbstractLinkedProcessorSlot类型的变量:first和end,这就是链表的头结点和尾节点。

创建DefaultProcessorSlotChain对象时,首先创建了首节点,然后把首节点赋值给了尾节点,可以用下图表示:

将第一个节点添加到链表中后,整个链表的结构变成了如下图这样:

将所有的节点都加入到链表中后,整个链表的结构变成了如下图所示:

这样就将所有的Slot对象添加到了链表中去了,每一个Slot都是继承自AbstractLinkedProcessorSlot。而AbstractLinkedProcessorSlot是一种责任链的设计,每个对象中都有一个next属性,指向的是另一个AbstractLinkedProcessorSlot对象。其实责任链模式在很多框架中都有,比如Netty中是通过pipeline来实现的。

知道了SlotChain是如何创建的了,那接下来就要看下是如何执行Slot的entry方法的了。

执行SlotChain的entry方法

lookProcessChain方法获得的ProcessorSlotChain的实例是DefaultProcessorSlotChain,那么执行chain.entry方法,就会执行DefaultProcessorSlotChain的entry方法,而DefaultProcessorSlotChain的entry方法是这样的:

  1. @Override

  2. public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, Object... args)

  3.    throws Throwable {

  4.    first.transformEntry(context, resourceWrapper, t, count, args);

  5. }

也就是说,DefaultProcessorSlotChain的entry实际是执行的first属性的transformEntry方法。

而transformEntry方法会执行当前节点的entry方法,在DefaultProcessorSlotChain中first节点重写了entry方法,具体如下:

  1. @Override

  2. public void entry(Context context, ResourceWrapper resourceWrapper, Object t, int count, Object... args)

  3.    throws Throwable {

  4.    super.fireEntry(context, resourceWrapper, t, count, args);

  5. }

first节点的entry方法,实际又是执行的super的fireEntry方法,那继续把目光转移到fireEntry方法,具体如下:

  1. @Override

  2. public void fireEntry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, Object... args)

  3.    throws Throwable {

  4.    if (next != null) {

  5.        next.transformEntry(context, resourceWrapper, obj, count, args);

  6.    }

  7. }

从这里可以看到,从fireEntry方法中就开始传递执行entry了,这里会执行当前节点的下一个节点transformEntry方法,上面已经分析过了,transformEntry方法会触发当前节点的entry,也就是说fireEntry方法实际是触发了下一个节点的entry方法。具体的流程如下图所示:

从图中可以看出,从最初的调用Chain的entry()方法,转变成了调用SlotChain中Slot的entry()方法。从上面的分析可以知道,SlotChain中的第一个Slot节点是NodeSelectorSlot。

执行Slot的entry方法

现在可以把目光转移到SlotChain中的第一个节点NodeSelectorSlot的entry方法中去了,具体的代码如下:

  1. @Override

  2. public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, Object... args)

  3.    throws Throwable {

  4.    DefaultNode node = map.get(context.getName());

  5.    if (node == null) {

  6.        synchronized (this) {

  7.            node = map.get(context.getName());

  8.            if (node == null) {

  9.                node = Env.nodeBuilder.buildTreeNode(resourceWrapper, null);

  10.                HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());

  11.                cacheMap.putAll(map);

  12.                cacheMap.put(context.getName(), node);

  13.                map = cacheMap;

  14.            }

  15.            // Build invocation tree

  16.            ((DefaultNode)context.getLastNode()).addChild(node);

  17.        }

  18.    }

  19.    context.setCurNode(node);

  20.    // 由此触发下一个节点的entry方法

  21.    fireEntry(context, resourceWrapper, node, count, args);

  22. }

从代码中可以看到,NodeSelectorSlot节点做了一些自己的业务逻辑处理,具体的大家可以深入源码继续追踪,这里大概的介绍下每种Slot的功能职责:

  • NodeSelectorSlot 负责收集资源的路径,并将这些资源的调用路径,以树状结构存储起来,用于根据调用路径来限流降级;

  • ClusterBuilderSlot 则用于存储资源的统计信息以及调用者信息,例如该资源的 RT, QPS, thread count 等等,这些信息将用作为多维度限流,降级的依据;

  • StatistcSlot 则用于记录,统计不同纬度的 runtime 信息;

  • FlowSlot 则用于根据预设的限流规则,以及前面 slot 统计的状态,来进行限流;

  • AuthorizationSlot 则根据黑白名单,来做黑白名单控制;

  • DegradeSlot 则通过统计信息,以及预设的规则,来做熔断降级;

  • SystemSlot 则通过系统的状态,例如 load1 等,来控制总的入口流量;

执行完业务逻辑处理后,调用了fireEntry()方法,由此触发了下一个节点的entry方法。此时我们就知道了sentinel的责任链就是这样传递的:每个Slot节点执行完自己的业务后,会调用fireEntry来触发下一个节点的entry方法。

所以可以将上面的图完整了,具体如下:

至此就通过SlotChain完成了对每个节点的entry()方法的调用,每个节点会根据创建的规则,进行自己的逻辑处理,当统计的结果达到设置的阈值时,就会触发限流、降级等事件,具体是抛出BlockException异常。

总结

sentinel主要是基于7种不同的Slot形成了一个链表,每个Slot都各司其职,自己做完分内的事之后,会把请求传递给下一个Slot,直到在某一个Slot中命中规则后抛出BlockException而终止。

前三个Slot负责做统计,后面的Slot负责根据统计的结果结合配置的规则进行具体的控制,是Block该请求还是放行。

控制的类型也有很多可选项:根据qps、线程数、冷启动等等。

然后基于这个核心的方法,衍生出了很多其他的功能:

  • 1、dashboard控制台,可以可视化的对每个连接过来的sentinel客户端 (通过发送heartbeat消息)进行控制,dashboard和客户端之间通过http协议进行通讯。

  • 2、规则的持久化,通过实现DataSource接口,可以通过不同的方式对配置的规则进行持久化,默认规则是在内存中的

  • 3、对主流的框架进行适配,包括servlet,dubbo,rRpc等

Dashboard控制台

sentinel-dashboard是一个单独的应用,通过spring-boot进行启动,主要提供一个轻量级的控制台,它提供机器发现、单机资源实时监控、集群资源汇总,以及规则管理的功能。

我们只需要对应用进行简单的配置,就可以使用这些功能。

1 启动控制台

1.1 下载代码并编译控制台

  • 下载 控制台 工程

  • 使用以下命令将代码打包成一个 fat jar: mvn cleanpackage

1.2 启动

使用如下命令启动编译后的控制台:

  1. $ java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -jar target/sentinel-dashboard.jar

上述命令中我们指定了一个JVM参数, -Dserver.port=8080 用于指定 Spring Boot 启动端口为 8080

2 客户端接入控制台

控制台启动后,客户端需要按照以下步骤接入到控制台。

2.1 引入客户端jar包

通过 pom.xml 引入 jar 包:

  1. <dependency>

  2.    <groupId>com.alibaba.csp</groupId>

  3.    <artifactId>sentinel-transport-simple-http</artifactId>

  4.    <version>x.y.z</version>

  5. </dependency>

2.2 配置启动参数

启动时加入 JVM 参数 -Dcsp.sentinel.dashboard.server=consoleIp:port 指定控制台地址和端口。若启动多个应用,则需要通过 -Dcsp.sentinel.api.port=xxxx 指定客户端监控 API 的端口(默认是 8719)。

除了修改 JVM 参数,也可以通过配置文件取得同样的效果。更详细的信息可以参考 启动配置项。

2.3 触发客户端初始化

确保客户端有访问量,Sentinel 会在客户端首次调用的时候进行初始化,开始向控制台发送心跳包。

sentinel-dashboard是一个独立的web应用,可以接受客户端的连接,然后与客户端之间进行通讯,他们之间使用http协议进行通讯。他们之间的关系如下图所示:

dashboard

dashboard启动后会等待客户端的连接,具体的做法是在 MachineRegistryController 中有一个 receiveHeartBeat 的方法,客户端发送心跳消息,就是通过http请求这个方法。

dashboard接收到客户端的心跳消息后,会把客户端的传递过来的ip、port等信息封装成一个 MachineInfo对象,然后将该对象通过 MachineDiscovery 接口的 addMachine 方法添加到一个ConcurrentHashMap中保存起来。

这里会有问题,因为客户端的信息是保存在dashboard的内存中的,所以当dashboard应用重启后,之前已经发送过来的客户端信息都会丢失掉。

client

client在启动时,会通过CommandCenterInitFunc选择一个,并且只选择一个CommandCenter进行启动。

启动之前会通过spi的方式扫描获取到所有的CommandHandler的实现类,然后将所有的CommandHandler注册到一个HashMap中去,待后期使用。

PS:考虑一下,为什么CommandHandler不需要做持久化,而是直接保存在内存中。

注册完CommandHandler之后,紧接着就启动CommandCenter了,目前CommandCenter有两个实现类:

  • SimpleHttpCommandCenter 通过ServerSocket启动一个服务端,接受socket连接

  • NettyHttpCommandCenter 通过Netty启动一个服务端,接受channel连接

CommandCenter启动后,就等待dashboard发送消息过来了,当接收到消息后,会把消息通过具体的CommandHandler进行处理,然后将处理的结果返回给dashboard。

这里需要注意的是,dashboard给client发送消息是通过异步的httpClient进行发送的,在HttpHelper类中。

但是诡异的是,既然通过异步发送了,又通过一个CountDownLatch来等待消息的返回,然后获取结果,那这样不就失去了异步的意义的吗?具体的代码如下:

  1. private String httpGetContent(String url) {

  2.    final HttpGet httpGet = new HttpGet(url);

  3.    final CountDownLatch latch = new CountDownLatch(1);

  4.    final AtomicReference<String> reference = new AtomicReference<>();

  5.    httpclient.execute(httpGet, new FutureCallback<HttpResponse>() {

  6.        @Override

  7.        public void completed(final HttpResponse response) {

  8.            try {

  9.                reference.set(getBody(response));

  10.            } catch (Exception e) {

  11.                logger.info("httpGetContent " + url + " error:", e);

  12.            } finally {

  13.                latch.countDown();

  14.            }

  15.        }

  16.        @Override

  17.        public void failed(final Exception ex) {

  18.            latch.countDown();

  19.            logger.info("httpGetContent " + url + " failed:", ex);

  20.        }

  21.        @Override

  22.        public void cancelled() {

  23.            latch.countDown();

  24.        }

  25.    });

  26.    try {

  27.        latch.await(5, TimeUnit.SECONDS);

  28.    } catch (Exception e) {

  29.        logger.info("wait http client error:", e);

  30.    }

  31.    return reference.get();

  32. }

主流框架的适配

sentinel也对一些主流的框架进行了适配,使得在使用主流框架时,也可以享受到sentinel的保护。目前已经支持的适配器包括以下这些:

  • Web Servlet

  • Dubbo

  • Spring Boot / Spring Cloud

  • gRPC

  • Apache RocketMQ

其实做适配就是通过那些主流框架的扩展点,然后在扩展点上加入sentinel限流降级的代码即可。拿Servlet的适配代码看一下,具体的代码是:

  1. public class CommonFilter implements Filter {

  2.    @Override

  3.    public void init(FilterConfig filterConfig) {

  4.    }

  5.    @Override

  6.    public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)

  7.        throws IOException, ServletException {

  8.        HttpServletRequest sRequest = (HttpServletRequest)request;

  9.        Entry entry = null;

  10.        try {

  11.            // 根据请求生成的资源

  12.            String target = FilterUtil.filterTarget(sRequest);

  13.            target = WebCallbackManager.getUrlCleaner().clean(target);

  14.            // “申请”该资源

  15.            ContextUtil.enter(target);

  16.            entry = SphU.entry(target, EntryType.IN);

  17.            // 如果能成功“申请”到资源,则说明未被限流

  18.            // 则将请求放行

  19.            chain.doFilter(request, response);

  20.        } catch (BlockException e) {

  21.            // 否则如果捕获了BlockException异常,说明请求被限流了

  22.            // 则将请求重定向到一个默认的页面

  23.            HttpServletResponse sResponse = (HttpServletResponse)response;

  24.            WebCallbackManager.getUrlBlockHandler().blocked(sRequest, sResponse);

  25.        } catch (IOException e2) {

  26.            // 省略部分代码

  27.        } finally {

  28.            if (entry != null) {

  29.                entry.exit();

  30.            }

  31.            ContextUtil.exit();

  32.        }

  33.    }

  34.    @Override

  35.    public void destroy() {

  36.    }

  37. }

通过Servlet的Filter进行扩展,实现一个Filter,然后在doFilter方法中对请求进行限流控制,如果请求被限流则将请求重定向到一个默认页面,否则将请求放行给下一个Filter。

规则持久化,动态化

Sentinel 的理念是开发者只需要关注资源的定义,当资源定义成功,可以动态增加各种流控降级规则。

Sentinel 提供两种方式修改规则:

  • 通过 API 直接修改 ( loadRules)

  • 通过 DataSource适配不同数据源修改

通过 API 修改比较直观,可以通过以下三个 API 修改不同的规则:

  1. FlowRuleManager.loadRules(List<FlowRule> rules); // 修改流控规则

  2. DegradeRuleManager.loadRules(List<DegradeRule> rules); // 修改降级规则

  3. SystemRuleManager.loadRules(List<SystemRule> rules); // 修改系统规则

DataSource 扩展

上述 loadRules() 方法只接受内存态的规则对象,但应用重启后内存中的规则就会丢失,更多的时候规则最好能够存储在文件、数据库或者配置中心中。

DataSource 接口给我们提供了对接任意配置源的能力。相比直接通过 API 修改规则,实现 DataSource 接口是更加可靠的做法。

官方推荐通过控制台设置规则后将规则推送到统一的规则中心,用户只需要实现 DataSource 接口,来监听规则中心的规则变化,以实时获取变更的规则

DataSource 拓展常见的实现方式有:

  • 拉模式:客户端主动向某个规则管理中心定期轮询拉取规则,这个规则中心可以是 SQL、文件,甚至是 VCS 等。这样做的方式是简单,缺点是无法及时获取变更;

  • 推模式:规则中心统一推送,客户端通过注册监听器的方式时刻监听变化,比如使用 Nacos、Zookeeper 等配置中心。这种方式有更好的实时性和一致性保证。

至此,sentinel的基本情况都已经分析了,更加详细的内容,可以继续阅读源码来研究。

我是逅弈,如果文章对您有帮助,欢迎您点赞加关注,并欢迎您关注我的公众号:


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存